Centrifugal and positive-displacement pumps share some basic design requirements. Both require an adequate, constant suction volume to deliver designed fluid volumes and liquid pressures to their installed systems. In addition, both are affected by variations in the liquid’s physical properties (e.g., specific gravity, viscosity, etc.) and flow characteristics through the pump.
Unlike centrifugal pumps, positive-displacement pumps are designed to displace a specific volume of liquid each time they complete one cycle of operation. As a result, they are not as prone to variations in performance as a direct result of changes in the downstream system. However, there are exceptions to this. Some types of positive-displacement pumps, such are screw-types, are extremely sensitive to variations in system backpressure.
When positive-displacement pumps are used, the system must be protected from excessive pressures. This type of pump will deliver whatever discharge pressure is required to overcome the system’s total head. The only restrictions to its maximum pressure are the burst pressure of the system’s components and the maximum driver horsepower